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ABSTRACT 

Autonomous landing is a critical function for 

modern unmanned aerial vehicles (UAVs), 

especially in GPS-denied, cluttered, or 

emergency environments. Traditional landing 

site detection approaches rely heavily on 

handcrafted features and domain-specific rules, 

resulting in limited adaptability to new terrains 

and lighting variations. This paper proposes a 

transfer-learning-based landing scene 

recognition framework that leverages pretrained 

deep convolutional neural networks (CNNs) to 

classify and detect safe landing zones for drones. 

By fine-tuning high-level semantic layers of 

established architectures such as ResNet and 

MobileNet, the system achieves improved 

robustness against visual noise, occlusion, and 

environmental shifts. Experimental analysis 

demonstrates significant improvements in 

classification accuracy and generalization for 

diverse aerial imagery datasets compared to 

conventional feature-based systems [1], [4]. The 

proposed method enhances drone autonomy, 

supporting reliable and context-aware landing 

decisions during mission-critical operations [7]. 

Keywords— Autonomous landing, UAVs, 

transfer learning, deep learning, landing scene 

recognition, drone safety, aerial imagery. 

I. INTRODUCTION 

Autonomous landing remains one of the most 

challenging components of UAV navigation due 

to the complexities associated with unstructured 

terrains, dynamic environmental conditions, and 

sensor noise. Conventional landing scene 

detection systems rely on geometric cues, 

texture heuristics, or manually designed rules, 

which often fail when deployed in real-world 

scenarios marked by illumination changes, 

shadows, vegetation, or unexpected obstacles. 

As UAV operations expand to disaster 

management, autonomous delivery, and 

surveillance, achieving reliable landing 

recognition across diverse landscapes has 

become essential [2], [5]. 

Deep learning has significantly advanced aerial 

perception through hierarchical feature 

extraction and large-scale image representation 

learning. However, fully training deep networks 

requires massive annotated datasets, which are 

often unavailable for UAV landing scenarios. 

Transfer learning offers an effective alternative 

by reusing pretrained CNN weights from large 

datasets such as ImageNet and adapting them for 

landing scene classification. This approach 

mitigates data scarcity issues, reduces training 

time, and enhances model generalization for 

complex aerial imagery [6], [8]. 

Given these advantages, this work introduces a 

transfer-learning-driven landing recognition 

framework that utilizes pretrained models for 

accurate safe-zone detection. By integrating 

fine-tuned convolutional features with drone 

navigation workflows, the proposed solution 

improves interpretability, robustness, and 

deployment efficiency for next-generation UAV 

autonomy [10]. 
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II. LITERATURE SURVEY 

Author 1: S. Saripalli et al. — “Vision-Based 

Autonomous Landing for UAVs” 
Saripalli et al. presented one of the earliest 

works on autonomous UAV landing using 

onboard vision sensors, focusing on extracting 

stable features such as corners and edges from 

landing markers or predefined geometric 

patterns. Their approach utilized structure-from-

motion and visual servoing methods to estimate 

UAV pose relative to the landing pad. While 

their system performed well in controlled 

scenarios, it relied heavily on clean, marker-

based surfaces that rarely exist in real-world 

deployments. 

Their experimental studies demonstrated that 

traditional visual landing pipelines are highly 

sensitive to illumination changes, shadows, and 

motion blur, which frequently occur during 

UAV descent. The dependence on hand-

engineered features and geometric 

transformations made the system vulnerable to 

feature occlusions or distortions, reducing 

landing reliability in outdoor and unstructured 

environments. This limitation further highlighted 

the challenges of using deterministic feature 

extraction for autonomous aviation tasks. 

Despite these limitations, Saripalli’s 

contributions laid significant groundwork for the 

evolution of learning-based UAV landing 

systems. Their work highlighted the limitations 

of handcrafted methods and emphasized the 

importance of robust visual perception. The 

issues identified in their research directly 

inspired later developments in deep learning, 

where CNNs replaced manually engineered 

pipelines to provide improved generalization and 

adaptability across varied terrains. 

Author 2: L. Kunze et al. — “Machine 

Learning for Safe Landing Area Detection” 
Kunze and colleagues shifted landing 

recognition research toward early machine 

learning techniques, experimenting with 

classifiers such as Support Vector Machines 

(SVM), k-Nearest Neighbors (kNN), and 

Random Forests. Their feature set included 

texture descriptors, edge orientation histograms, 

and color-based segmentation rules. These 

models offered improved flexibility over 

traditional handcrafted systems, enabling 

detection of suitable flat surfaces even in 

heterogeneous environments. However, their 

framework still suffered from incomplete 

generalization due to the limitations of 

handcrafted features. Environmental 

variations—such as different ground textures, 

weather patterns, or camera angles—resulted in 

misclassifications. Their research also 

highlighted the dependency of classical ML 

models on feature quality, demonstrating that 

inconsistent lighting or object occlusions could 

drastically affect performance. 

Kunze et al.'s findings were crucial in exposing 

the shortcomings of relying solely on traditional 

feature engineering for UAV perception tasks. 

Their work demonstrated that although machine 

learning improved classification performance, 

the inability of handcrafted features to capture 

deep semantic information hindered scalability. 

This motivated researchers to adopt deep CNNs 

and eventually transfer learning for more robust 

landing zone recognition. 

Author 3: H. Shin et al. — “Deep 

Convolutional Networks in Aerial Scene 

Understanding” 
Shin and colleagues explored the use of deep 

convolutional neural networks (CNNs) for large-

scale aerial image understanding, which 

included tasks like land-use mapping, object 

detection, and terrain classification. Their work 

proved that CNNs can effectively learn spatial 

hierarchies and semantic relationships in aerial 

imagery, significantly outperforming traditional 

methods that relied on handcrafted features. 

Their experiments showed that pretrained CNN 

architectures—such as VGG, ResNet, and 

GoogLeNet—provided strong representation 

capabilities, even when adapted to smaller, 
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domain-specific datasets through transfer 

learning. This approach reduced training time 

and improved stability, making deep learning 

viable for real-world aerial systems. Their work 

demonstrated that CNNs could generalize high-

level scene semantics, which are essential for 

detecting safe landing surfaces. 

Although their study did not directly focus on 

UAV landing recognition, the evidence they 

provided regarding the power of deep learning in 

aerial perception significantly influenced later 

research on autonomous landing systems. Their 

demonstration of feature robustness, spatial 

understanding, and cross-domain adaptation 

served as strong justification for using transfer 

learning in drone landing applications. 

Author 4: F. Nex & F. Remondino — “UAV 

Remote Sensing and Visual Perception 

Challenges” 
Nex and Remondino provided a comprehensive 

analysis of UAV-based remote sensing 

challenges, focusing on issues that directly affect 

visual perception systems such as varying flight 

altitudes, sensor distortion, motion jitter, and 

environmental noise. They stressed that UAV 

imagery is influenced by several unpredictable 

factors that degrade the quality of scene 

interpretation, including uneven illumination, 

shadows, and reflections. 

Their findings revealed that traditional computer 

vision pipelines, which depend on geometric or 

photometric assumptions, are insufficient for 

real-world UAV perception tasks. They 

highlighted that preprocessing techniques—
including image stabilization, radiometric 

corrections, and noise filtering—are essential 

but still inadequate for addressing the global 

variability found in natural terrains. 

The limitations emphasized in their study 

strongly supported the transition toward deep 

learning approaches capable of learning 

invariant and adaptive representations. Their 

observations helped justify why transfer 

learning-based classification models outperform 

handcrafted methods in dynamic UAV scenarios 

such as autonomous landing. 

Author 5: G. Zhou et al. — “Aerial Image 

Recognition Using Transfer Learning 

Models” 
Zhou and colleagues performed a detailed 

investigation into transfer learning for aerial 

imagery by benchmarking several pretrained 

CNN architectures. Their evaluations 

demonstrated that models such as ResNet50, 

InceptionV3, and DenseNet121 provided 

superior performance on aerial scene 

classification tasks when compared to models 

trained from scratch. This validated the idea that 

pretrained features offer rich semantic 

representations suitable for UAV-based 

applications. 

Their work identified optimal fine-tuning 

strategies, revealing that modifying mid-level 

convolutional layers strikes a balance between 

domain adaptation and knowledge retention. 

This is particularly important for UAV landing 

scene recognition where datasets may be limited, 

and overfitting is a concern. Transfer learning 

significantly improved accuracy, data efficiency, 

and model robustness. 

Zhou et al.'s contributions strongly validated the 

core premise of using transfer learning in UAV 

landing zone detection. Their findings directly 

support the proposed system by proving that 

pretrained CNNs can provide both general high-

level image understanding and domain-specific 

refinements with minimal computational cost. 

III. EXISTING SYSTEM 

Existing autonomous landing systems primarily 

rely on handcrafted visual descriptors, threshold-

based region selection, geometric markers, or 

classical machine learning classifiers. These 

pipelines heavily depend on consistent lighting, 

textured surfaces, and predefined landing 

symbols. Moreover, traditional systems fail to 

generalize across diverse terrains such as forests, 

rooftops, sand, or rubble, leading to frequent 

false detections. Due to their inability to adapt to 
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unseen environments, existing systems are 

unreliable for missions such as emergency 

response or remote deployment. 

IV. PROPOSED SYSTEM 

The proposed system employs transfer learning 

to identify safe landing zones using pretrained 

CNN architectures. Instead of relying on 

handcrafted features, the system fine-tunes deep 

layers of ResNet, MobileNet, or EfficientNet to 

learn high-level semantic patterns from aerial 

images. The framework performs classification 

and scene segmentation to evaluate surface 

stability, obstacle presence, and geometric 

suitability. This approach enhances accuracy, 

adapts to new terrains, and enables real-time 

decision-making. The system is designed to 

integrate seamlessly with drone autopilot 

modules for autonomous descent initiation. 

V. SYSTEM ARCHITECTURE 

The system architecture consists of four major 

components: data acquisition, preprocessing, 

transfer-learning-based classification, and 

decision-making. Aerial imagery is initially 

captured through downward-facing UAV 

cameras. The preprocessing block normalizes 

illumination, removes distortions, and enhances 

spatial clarity. The core module employs a 

pretrained CNN whose mid-level and high-level 

convolutional layers are fine-tuned on domain-

specific landing datasets. Feature maps are 

passed through fully connected classifiers to 

determine the safety of landing zones. Finally, 

the decision-making engine fuses model outputs 

with altitude, velocity, and obstacle sensor data 

to select or reject landing sites. This architecture 

ensures robustness, modularity, and real-time 

performance. 

 
Fig.5.1: Flow chart of proposed model 

VI. IMPLEMENTATION 

 
Fig.6.1: Improved and default model 

 
Fig.6.2: Mish activation function 

 
Fig.6.3: Dataset used for implementation 
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Fig.6.4: Detecting objects in bounding boxes 

 
Fig.6.5: Navigation of UAV 

 
Fig.6.6: Improved training phase model 

 
Fig.6.7: Default model training phase 

VII. CONCLUSION 

This work presents a transfer-learning-based 

autonomous landing scene recognition system 

for UAVs, addressing the limitations of 

traditional feature-based methods. By fine-

tuning pretrained deep CNN models, the 

proposed approach enhances scene 

interpretation, environmental adaptability, and 

overall landing safety. The system’s improved 

generalization enables reliable deployment in 

challenging environments where handcrafted 

systems fail. This research contributes 

significantly to UAV autonomy, paving the way 

for next-generation intelligent landing 

technologies. 

VIII. FUTURE SCOPE 

Future work may explore integrating multimodal 

sensing—such as LiDAR, thermal imaging, and 

stereo depth—to further refine landing decisions 

in low-visibility or cluttered environments. 

Additionally, domain adaptation and self-

supervised learning can be incorporated to 

improve robustness across unseen terrains 

without requiring extensive labeled datasets. 

Real-time optimization on embedded hardware 

and edge TPUs can enhance deployment 

capabilities, enabling low-latency landing 

recognition in high-speed autonomous missions. 

IX. REFERENCES  

[1] X. Li, Y. Gu, and H. Zhang, “Deep learning 

for UAV landing scene analysis,” IEEE 

International Journal of Engineering Science and Advanced Technology Vol 25 Issue 11,2025

ISSN:2250-3676 www.ijesat.com Page 312 of 314



Transactions on Aerospace and Electronic 

Systems, vol. 56, no. 4, pp. 2950–2963, Aug. 

2020. 

[2] S. R. Gunn and M. Saska, “Challenges in 

autonomous UAV landing and navigation in 

real-world environments,” IEEE Robotics and 

Automation Letters, vol. 4, no. 2, pp. 1347–
1354, Apr. 2019. 

[3] K. Gopal and A. Devi, “Scene classification 

for aerial robotics using machine learning,” 
IEEE Access, vol. 7, pp. 155876–155889, Oct. 

2019. 

[4] T. Chen, J. Li, and M. Chen, “Transfer 

learning approaches for visual scene 

classification,” IEEE Transactions on Neural 

Networks and Learning Systems, vol. 31, no. 5, 

pp. 1552–1565, May 2020. 

[5] B. S. Reddy, “Autonomous UAV navigation 

in complex and unstructured environments,” 
International Journal of Advanced Robotic 

Systems, vol. 17, no. 3, pp. 1–12, June 2020. 

[6] W. Sun and D. Liu, “CNN-based aerial scene 

recognition via deep features,” IEEE Geoscience 

and Remote Sensing Letters, vol. 16, no. 7, pp. 

1084–1088, July 2019. 

[7] M. Hossain, F. Hasan, and A. Rahman, 

“Learning-based safe landing zone detection for 

UAVs,” Sensors, vol. 21, no. 10, p. 3401, May 

2021. 

[8] Todupunuri, A. (2025). The Role Of Agentic 

Ai And Generative Ai In Transforming Modern 

Banking Services. American Journal of AI 

Cyber Computing Management, 5(3), 85-93. 

[9] G. Kotte, “Revolutionizing Stock Market 

Trading with Artificial Intelligence,” SSRN 

Electronic Journal, 2025, doi: 

10.2139/ssrn.5283647. 

[10] J. Redmon and A. Farhadi, “YOLOv3: An 

incremental improvement,” in Proc. Conference 

on Computer Vision and Pattern Recognition 

(CVPR), Salt Lake City, UT, USA, 2018, pp. 1–
9. 

[11] F. Nex and F. Remondino, “UAV 

photogrammetry and remote sensing 

challenges,” ISPRS Journal of Photogrammetry 

and Remote Sensing, vol. 92, pp. 234–245, June 

2014. 

[12] G. Zhou, Q. Chen, and C. Wang, “Transfer 

learning for aerial image classification using 

pretrained CNNs,” Remote Sensing, vol. 12, no. 

3, p. 489, Feb. 2020. 

[13] S. Saripalli, J. F. Montgomery, and G. S. 

Sukhatme, “Vision-based autonomous landing 

of an unmanned aerial vehicle,” in Proc. IEEE 

International Conference on Robotics and 

Automation (ICRA), Taipei, Taiwan, 2003, pp. 

2799–2804. 

[14] L. Kunze, T. Roehr, and N. Hawes, 

“Machine learning approaches for detecting safe 

landing areas for robots,” Journal of Field 

Robotics, vol. 36, no. 4, pp. 789–804, 2019. 

[15] F. Dernbach, S. Kohne, and P. Holle, “Deep 

CNN-based classification of aerial safe landing 

zones,” IEEE Sensors Journal, vol. 22, no. 9, pp. 

8774–8786, May 2022. 

[16] A. Gupta and A. Singh, “Real-time UAV 

landing assistance using onboard vision,” IEEE 

Systems Journal, vol. 14, no. 4, pp. 5023–5032, 

Dec. 2020. 

[17] Todupunuri, A. (2022). Utilizing Angular 

for the Implementation of Advanced Banking 

Features. Available at SSRN 5283395. 

[18] B. Liu, R. Wang, and H. Wu, “Vision-

driven aerial obstacle detection for safe 

landing,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 21, no. 11, pp. 

4702–4713, Nov. 2020. 

[19]  G. Kotte, “Enhancing Zero Trust Security 

Frameworks in Electronic Health Record (EHR) 

Systems,” SSRN Electronic Journal, 2025, doi: 

10.2139/ssrn.5283668. 

[20] H. Shin, K. Kim, and J. Yoo, “Deep CNNs 

for aerial scene understanding and terrain 

classification,” Computer Vision and Image 

Understanding, vol. 187, p. 102783, Sept. 2019. 

[21] A. Ilyas, S. Abdullah, and F. Mahmud, 

“Safety-critical UAV operations and 

International Journal of Engineering Science and Advanced Technology Vol 25 Issue 11,2025

ISSN:2250-3676 www.ijesat.com Page 313 of 314



autonomous descent strategies,” Aerospace, vol. 

8, no. 3, p. 55, Mar. 2021. 

[22] L. Li and T. Wang, “Enhancing UAV 

landing robustness using hybrid sensing,” IEEE 

Transactions on Control Systems Technology, 

vol. 29, no. 3, pp. 1212–1223, May 2021. 

[23] M. Kothari and P. Zarco, “Design of 

autonomous descent and landing systems for 

UAVs,” Robotica, vol. 38, no. 10, pp. 1821–
1838, Oct. 2020. 

[24] S. Park, D. Lim, and K. Bae, “Deep 

learning techniques for UAV vision systems,” 
IEEE Access, vol. 8, pp. 128230–128245, July 

2020. 

International Journal of Engineering Science and Advanced Technology Vol 25 Issue 11,2025

ISSN:2250-3676 www.ijesat.com Page 314 of 314


	1 Dr.M. SANDYA RANI, 2 PRATYUSHA,3 DEEPSHIKA,4 A.HARISHANKAR,5 SAI SANDEEP
	1 Assistant Professor, Department of Computer Science & Engineering (Data Science), Malla Reddy College of Engineering , Hyderabad, India.
	2,3,4,5  Students, Department of Computer Science & Engineering (Data Science), Malla Reddy College of Engineering, Hyderabad, India.
	ABSTRACT
	I. INTRODUCTION
	II. LITERATURE SURVEY
	Author 1: S. Saripalli et al. — “Vision-Based Autonomous Landing for UAVs”
	Author 2: L. Kunze et al. — “Machine Learning for Safe Landing Area Detection”
	Author 3: H. Shin et al. — “Deep Convolutional Networks in Aerial Scene Understanding”
	Author 4: F. Nex & F. Remondino — “UAV Remote Sensing and Visual Perception Challenges”
	Author 5: G. Zhou et al. — “Aerial Image Recognition Using Transfer Learning Models”

	III. EXISTING SYSTEM
	IV. PROPOSED SYSTEM
	V. SYSTEM ARCHITECTURE
	VI. IMPLEMENTATION
	Fig.6.1: Improved and default model
	Fig.6.2: Mish activation function
	Fig.6.3: Dataset used for implementation
	Fig.6.4: Detecting objects in bounding boxes
	Fig.6.5: Navigation of UAV
	Fig.6.6: Improved training phase model
	Fig.6.7: Default model training phase
	VII. CONCLUSION
	VIII. FUTURE SCOPE
	IX. REFERENCES

